紅外線的發現

公元1666年牛頓發現光譜並測量出3,900~7,600(400nm~700nm)是可見光的波長。

IMG_20220224小熊甜蜜森林 (2).jpg

1800年4月24日英國倫敦皇家學會威廉·赫歇爾發表太陽光在可見光譜的紅光之外還有一種不可見的延伸光譜,具有效應。他所使用的方法很簡單,用一支溫度計測量經過稜鏡分光後的各色光線溫度,由紫到紅,發現溫度逐漸增加,可是當溫度計放到紅光以外的部份,溫度仍持續上昇,因而斷定有紅外線的存在。在紫外線的部份也做同樣的測試,但溫度並沒有增高的反應。紫外線是1801年由RITTER用氯化銀感光劑所發現。

底片所能感應的近紅外線波長是肉眼所能看見光線波長的兩倍,用底片可以記錄到的波長上限是13,500,如果再加上其它特殊的設備,則最高可以達到20,000,再往上就必須用物理儀器偵測了。

 

紅外線輻射源可區分為四部份:

白熾發光區(Actinic range):或稱「光化反應區」,由白熾物體產生的射線,自可見光域到紅外域。如燈泡(鎢絲燈,UNGSTEN FILAMENT LAMP),太陽

熱體輻射區(Hot-object range):由非白熾物體產生的熱射線,如電熨斗及其它的電熱器等,平均溫度約在400℃左右。

發熱傳導區(Calorific range)由滾沸的熱水或熱蒸汽管產生的熱射線。平均溫度低於200℃,此區域又稱為「非光化反應區」(Non-actinic)。

溫體輻射區(Warm range):由人體動物地熱等所產生的熱射線,平均溫度約為40℃左右。

站在照相與攝影技術的觀點來看感光特性:光波的能量與感光材料的敏感度是造成感光最主要的因素。波長愈長,能量愈弱,即紅外線的能量要比可見光低,比紫外線更低。但是高能量波所必須面對的另一個難題就是:能量愈高穿透力愈強,無法形成反射波使感光材料擷取影像,例如X光,就必須在被照物體的背後取像。因此,攝影術就必須往長波長的方向——「近紅外線」部份發展。以造影為目標的近紅外線攝影術,隨著化學與電子科技的進展,演化出下列三個方向:

近紅外線底片:以波長700nm~900nm的近紅外線為主要感應範圍,利用加入特殊染料的乳劑產生光化學反應,使此一波域的光變化轉為化學變化形成影像

近紅外線電子感光材料:以波長700nm~2,000nm的近紅外線為主要感應範圍,它是利用以為主的化合物晶體產生光電反應,形成電子影像。

中、遠紅外線熱像感應材料:以波長3,000nm~14,000nm的中紅外線及遠紅外線為主要感應範圍,利用特殊的感應器及冷卻技術,形成電子影像。

arrow
arrow
    全站熱搜

    回憶的導演家 發表在 痞客邦 留言(0) 人氣()